xiv
Foreword

Foreword
Terry Halpin and Tony Morgan, Information Modeling and Relational Databases:

From Conceptual Analysis to Logical Design, Using ORM with ER and UML, 2ed.,

Morgan Kaufmann, 2008.

by Dr. Gordon C. Everest, Professor Emeritus and Adjunct, MIS and DBMS

Carlson School of Management, University of Minnesota, USA.

I am delighted and honored to write a foreword to this second edition. It gives me another opportunity to convince those in the world of data modeling that there is a better way. I am absolutely convinced that Object Role Modeling (ORM) is a better way to do data modeling. My underlying motive in this foreword is to sufficiently perk your interest to seriously study ORM, and this book is the best resource available to you.

Data modeling is the foundation of information systems development—if you don't get the database design “right” then the systems you build will be like a house of cards, collapsing under the weight of inevitable future forces for revision, enhancement, integration, and quality improvement. Thus, we need a scheme to guide our data modeling efforts to produce data models that clearly and accurately represent the users’ domain of discourse and facilitate human communication, understanding, and validation.

This book is a must for anyone who is serious about data modeling, but with a caution: you must devote enough time and effort to really understand ORM. Fortunately, I have my students as a captive audience for a whole semester—long enough for them to learn and practice ORM and become convinced that it is a better way. With ORM you can raise your data modeling skills to a whole new level.

This book also examines record-based modeling schemes: UML, SQL based on “Ted” Codd's relational model, and Peter Chen's Entity Relationship (ER) diagrams with many variations—Barker as in Oracle, Finkelstein's Information Engineering (IE), and IDEF1X (as in ERwin). Viewing these familiar modeling approaches from an ORM perspective provides an enriched understanding of their underlying nature.
Record-based modeling schemes use three constructs: Entity, Attribute, and Relationship. It is the clustering of attributes into entity records that is the root of many of our problems in data modeling. Normalization is the test to see if we clustered too much, and record decomposition is commonly used as a remedy to correct a violation of the normal forms.
Normalization is the Achilles heel of data modeling. Oh, to be able to avoid normalization altogether? The mere suggestion is intriguing to students and practitioners of data modeling. Well, with ORM you can. The problem stems from the lack of clear definition of relationships when we throw stuff into a record, so that the intra-record structure is implicitly defined or assumed. ORM forces you to separately consider and define all relevant relationships and constraints among the object domains in your universe.

ORM is actually based on only two constructs: objects and relationships (which correspond to the concepts of nouns as subject or object, and verbs as predicates in sentences). Both entities and attributes are treated as objects in ORM (not to be confused with objects in object-oriented technology). Objects play roles in relationships with other objects. Objects have attributes or descriptors by virtue of the roles they play in relationships with other objects. In record-based modeling, there are two kinds of relationships: inter-record, and intra-record among attributes. In ORM all relationships are represented the same way with a single construct. When the ORM model is a valid representation of the world being modeled, the functional and multivalued dependencies are explicitly defined, and hence, the generation of “records” (in a relational table) can be automated and can guarantee that the result will be fully normalized (to 5NF). That’s good news for data modelers.

ORM does not supplant ER diagrams or relational database designs, rather it is a stage before. It can enable, enlighten, and inform our development and understanding of ER/relational data models. We build records more for system efficiency, than for human convenience or comprehension. The premature notion of a record (a cluster of attribute domains along with an identifier to represent an entity) actually gets in the way of good data modeling. ORM does not involve records, tables, or attributes. As a consequence, we don't get bogged down in “table think”—there is no need for an explicit normalization process.

The second edition is even more focused on the centrality of data in information systems, and on the importance of semantics. Starting with the realization that users (collectively) know more than we could ever capture in a data model, we must use a data modeling scheme that captures the widest possible range of semantics, and express this meaning graphically. Semantics is paramount, and ORM goes way beyond any record-based modeling scheme in graphically depicting semantics. With this second edition, Terry and Tony have expanded the scope of ORM to include temporality, dynamics, state modeling, and business processes.

Well, is that sufficient to pique your interest in learning more about ORM? If you are a would-be student of ORM and you take data modeling seriously, I encourage you to invest some time to read this book. You won't regret it. You will grow to appreciate ORM and will become a better data modeler for it. In order to develop effective and maintainable information systems we need good data models, and for that we need a good data modeling methodology. ORM allows us to develop database designs at the highest conceptual level, unencumbered by things that are not of primary concern to user domain specialists. My deep desire is to see more and more database designers using ORM. The systems we build and the world we live in will be better for it. Join me in this journey and enjoy the adventure.
xiii

